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Role of corrections

In Fig. 6, to see the significance of the contributions
from corrections A and B, we divide the improved PT
prediction for the power spectra PðSÞðkÞ at z ¼ 1 into the

three pieces as PðSÞ
Kaiser, P

ðSÞ
corr;A, and PðSÞ

corr;B, which are sepa-

rately plotted as dotted, long-dashed, and short dashed

lines, respectively. The power spectrum PðSÞ
Kaiser is the con-

tribution of the nonlinear Kaiser term given in Eq. (10),
convolved with the damping function DFoG. The spectra

PðSÞ
corr;A and PðSÞ

corr;B represent the actual contributions of the

corrections A and B defined by Eq. (22), with a fitted value
of !v. The corrections A and B give different contributions
in the amplitude of the monopole and quadrupole spectra,
and their total contribution can reach$10% and$40% for
monopole and quadrupole spectra at k & 0:2h Mpc%1,
respectively. Thus, even though the resultant shape of the
total spectrum PðSÞðkÞ apparently resembles the one ob-
tained from the phenomenological model, the actual con-
tribution of the corrections A and B would be large and
cannot be neglected.
Note, however, that a closer look at low-z behavior

reveals a slight discrepancy around k$ 0:15h Mpc%1

and 0:22h Mpc%1 in the monopole spectrum. Also, dis-
crepancies in the quadrupole spectrum seem a bit large,
and eventually reach $5% error in some wave numbers at
z ¼ 0:5. This is partially ascribed to our heterogeneous
treatment on the corrections A and B using the standard PT
calculations. It is known that the standard PT result generi-
cally gives rise to a strong damping in the BAOs, and it
incorrectly leads to a phase reversal of the BAOs. Thus,
beyond the validity regime of the standard PT, the predic-

FIG. 5 (color online). Same as in Fig. 2, but here we adopt a new model of redshift distortion (18). Solid and dashed lines represent
the predictions for which the spectra P"", P"#, and P## are obtained from the improved PT including the correction up to the second-
order Born correction, and one-loop calculations of the standard PT, respectively. In both cases, the corrections A and B given in
Eqs. (19) and (20) are calculated from standard PT results (see Appendix A). The vertical arrows indicate the maximum wave number
k1% defined in Eq. (12), for standard PT and improved PT (from left to right).

FIG. 6 (color online). Contribution of each term in the
redshift-space power spectrum. For monopole (‘ ¼ 0, left) and
quadrupole (‘ ¼ 2, right) spectra of the improved model pre-
diction at z ¼ 1 shown as solid lines of Fig. 5, we divide the total
power spectrum PðSÞ

total (solid) into the three pieces as PðSÞ
total ¼

PðSÞ
Kaiser þ PðSÞ

corr;A þ PðSÞ
corr;B, and each contribution is separately

plotted dividing by smoothed reference spectra, PðSÞ
‘;no-wiggle.

Here, the spectrum PðSÞ
Kaiser (dotted) is the contribution of the

nonlinear Kaiser term (10) convolved with the Finger-of-God

damping DFoG, and the corrections PðSÞ
corr;A and PðSÞ

corr;B are those

given by Eq. (22).
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Role of corrections

Here, the spectra P!!, P"", and P!" denote the auto power
spectra of density and velocity divergence, and their cross
power spectrum, respectively. The velocity divergence " is
defined by " ! ru ¼ #rv=ðaHfÞ.2

On the other hand, the functional form of the damping
term can be basically modeled from the distribution func-
tion of one-dimensional velocity. Historically, it is charac-
terized by a Gaussian or exponential function (e.g., [51–
54]), which leads to

DFoG½x' ¼
!
expð#x2Þ Gaussian;
1=ð1þ x2Þ Lorentzian:

(11)

Note that there is an analogous expression for the expo-
nential distribution, i.e., DFoG½x' ¼ 1=ð1þ x2=2Þ2 [50],
but the resultant power spectrum is quite similar to the
one adopting the Lorentzian form for the range of our
interest, x & 1. Since the Finger-of-God effect is thought
to be a fully nonlinear effect, which mostly comes from the
virialized random motion of the mass (or galaxy) residing
in a halo, the prediction of #v seems rather difficult. Our
primary purpose is to model the shape and structure of the

acoustic feature in the power spectrum, and the precise
form of the damping is basically irrelevant. We thus regard
#v as a free parameter and determine it by fitting the
predictions to the simulations or observations.
Figure 2 compares the phenomenological models of

redshift distortion with combination of Eqs. (10) and (11)
with N-body simulations. In computing the redshift-space
power spectrum from the phenomenological models, we
adopt the improved PT treatment by Refs. [33,34], and the
analytic results including the corrections up to the second-
order Born approximation are used to obtain the three
different power spectra P!!, P!", and P"". The accuracy
of the improved PT treatment has been checked in detail by
Ref. [34], and it has been shown that the predictions of P!!

reproduce the N-body results quite well within 1% accu-
racy below the wave number k1%, indicated by the vertical
arrows in Fig. 2. This has been calibrated from a proper
comparison between N-body and PT results and is empiri-
cally characterized by solving the following equa-
tion [25,34]:

k21%
6$2

Z k1%

0
dqPlinðq; zÞ ¼ C (12)

with C ¼ 0:7 and Plin being the linear matter spectrum.
Note that the 1% accuracy of the improved PT prediction at

FIG. 2 (color online). Same as in Fig. 1, but here we plot the results of phenomenological model predictions. The three different
predictions depicted as solid, dashed, dot-dashed lines are based on the phenomenological model of redshift distortion (9) with various
choices of Kaiser and Finger-of-God terms [Eqs. (10) and (11)]. The left panel shows the monopole power spectra (‘ ¼ 0), and the
right panel shows the quadrupole spectra (‘ ¼ 2). In all cases, the one-dimensional velocity dispersion #v was determined by fitting
the predictions to the N-body simulations. In each panel, the vertical arrows indicate the maximum wave number k1% for improved PT
prediction including up to the second-order Born approximation [see Eq. (12) for a definition].

2The sign convention of the definition of velocity divergence "
differs from that of Refs. [33,34], but is equivalent to the one in
Refs. [26–28,42].
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Today’s Topic

Vector modes

Endangered species

Cosmic Antique

Cosmic Twister



Vector modes in cosmology
Classifying the spatial inhomogeneities as

scalar・vector・tensor

• Scalar：cosmic expansion・gravitational clustering

• Vector・tensor：remnants, sub-dominant components

minor, but helpful to probe early-universe physics

Intuitively,

vector modes are analogous to shear and/or vorticity 
in fluid mechanics (divergence-free)

S(�x, t), Vi(�x, t), Tij(�x, t)

Roles in cosmology



Vector modes in cosmology

σ̇i + 2H σi = 8π Ga2P Π(V)
i

δgi0 = a2 σi

Evolution equations 

Anisotropic stress Modification of gravity
 in vector sector(matter) (gravity)

Causal seeds / Cosmic string

2nd-order perterbation 

Cosmological vector fields
(Einstein-Aether / Extended Horava-Lifshitz)

+ (New sources)

1
H

(∇× v)i = ωi

In addition, anisotropic inflation may also produce vector modes

; qi ≡ Hωiq̇i + (1− 3 c2
s)H qi =

P

P + ρ
Π(V)

i



CMB constraints on vector modes

Dunkley et al. (’10)

Cosmic strings as a source producing vector modes

(WMAP+ACT)
Gµ < 1.6× 10−7 (95%CL)

16 J. Dunkley et al.

Fig. 11.— Joint two-dimensional marginalized distribution (68%
and 95% CL) for the primordial helium mass fraction YP and the
number of relativistic species Neff . The two are partly degenerate,
as increasing Neff or YP leads to increased damping of the power
spectrum. The predicted standard-BBN relation between Neff and
YP is indicated. The concordance Neff=3.04, YP = 0.25 model
lies on the edge of the two-dimensional 68% CL, and a model with
Neff=0, YP = 0 is excluded at high significance.

mean value is higher than predicted from ΛCDM, but
consistent at the 1.5σ level. A universe with no primor-
dial helium is ruled out at 6σ. The distributions for YP

and its correlation with the spectral index are shown in
Figure 10, with statistics in Table 4. Figure 5 shows how
a higher helium fraction consistent with WMAP data
(YP = 0.5) is ruled out by ACT’s determination of Silk
damping at small scales. There is still some uncertainty
in the exact details of recombination (e.g., Wong & Scott
2007; Chluba et al. 2007; Switzer & Hirata 2008; Fendt
et al. 2009; Chluba & Sunyaev 2010). A recent refine-
ment of the numerical code for recombination used for
this analysis (Recfast 1.5, by Seager et al. (1999), up-
dated to match Rubiño-Mart́ın et al. (2010)), gives a 2%
change in the spectrum at " = 2000. This is subdomi-
nant to the 7% percent shift from a 1σ change in YP , so
these effects are not expected to significantly affect cur-
rent constraints, although will become more important as
the data improve. If we consider the possible variation
of both the primordial helium fraction and the number
of relativistic species, the constraints on each parameter
are weakened as there is some degeneracy between the
two effects. The joint marginalized distribution for these
parameters is shown in Figure 11, together with the pre-
dicted relation between Neff and YP assuming standard
BBN. The concordance Neff=3.04, YP = 0.25 model lies
on the edge of the two-dimensional 68% CL, and a model
with Neff=0, YP = 0, is excluded at high significance.

4.3.3. Cosmic strings

Observations of the acoustic peaks in the CMB power
spectrum have ruled out defects from phase transitions
as the dominant mechanism for seeding cosmic structure
(see e.g., Vilenkin & Shellard 2000). However, certain
inflation models predict string perturbations of similar

Fig. 12.— The power spectrum measured by ACT at 148GHz,
scaled by !4 and with best-fit secondary model subtracted, with
the best-fit ΛCDM (solid) compared to a model with maximal cos-
mic string tension Gµ = 1.6 × 10−7 allowed by the ACT data at
95% CL (dashed, assuming a Nambu string template described in
Section 4.3.3). A model with the 95% upper limit allowed without
including ACT data, with Gµ = 2.6× 10−7, is shown for compari-
son (dot-dashed); it overpredicts the observed power in the range
1500 < ! < 4000.

amplitudes to the inflationary perturbations (Linde 1994;
Dvali & Tye 1999). Using the CMB one can constrain
the string tension, Gµ, and therefore the energy scale
at which the strings are formed. Unfortunately there is
significant uncertainty in the predicted power spectrum
from cosmic string-generated anisotropies, due to diffi-
culties in modeling the string network. Most approaches
model the network as an ensemble of string segments
with constant average properties, with string loops pro-
duced that decay into radiation. The equations of motion
are solved using either the Nambu or Abelian-Higgs (AH)
method, described in e.g., Bennett & Bouchet (1990);
Pogosian & Vachaspati (1999); Bevis et al. (2007); Bat-
tye & Moss (2010).
The small-scale CMB provides a unique probe of cos-

mic strings, with simulations and forecasts by Fraisse
et al. (2008) and Bevis et al. (2010) predicting a power
law behavior that could dominate over the Silk damping
tail of the inflationary inhomogeneities, consistent with
analytic predictions by Hindmarsh (1994). Constraints
have been placed on the cosmic string tension from re-
cent CMB and other cosmological data (Lo & Wright
2005;Wyman et al. 2005, 2006; Battye et al. 2006; Fraisse
2007; Bevis et al. 2007; Urrestilla et al. 2008; Sievers et al.
2009). Most recently, Battye & Moss (2010) report limits
of Gµ < 2.6 × 10−7 (95% CL) for Nambu strings using
5-year WMAP data combined with large-scale structure
and BBN data. They find a significant dependence of
this limit on the chosen string model, with up to a factor
of three variation. For a simple comparison, we consider
just the Nambu cosmic string template used in Battye &
Moss (2010), extended to scales " > 3000 with a power
law, B! ∝ "−1 (Fraisse et al. 2008). The template is
held fixed for all cosmological models. Assuming this
model, we find limits from ACT combined with WMAP

of qstr < 0.025 (95% CL), which corresponds to a tension
of

Gµ < 1.6× 10−7 (95% CL). (29)

The spectrum corresponding to this 95% upper limit is

For Nambu string,

Future feasibility

• B-mode polarizations
Seljak & Slosar (’06)

• Lensing effect on CMB
Yamauchi et al.  in prep.



Large-scale structure probes

Redshift distortion

Cosmic shear

Galaxy spectroscopic surveys

Galaxy imaging surveys

Vector modes can be separately detected

σi

ωi



Redshift distortion
Redshift of galaxies via spectroscopic measurement is inherently 
affected by the Doppler shift due to peculiar velocity of galaxies

real spaceRedshift space v :
ẑ :{ Peculiar velocity of galaxies

Observer’s 
line-of-sight direction

�s = �r +
(�v · ẑ)
aH(z)

ẑ ;

Galaxy clustering pattern is apparently distorted

 Anisotropic power spectrum: 

P (k) ; µ ≡ (�k · ẑ)/|�k|P (S)(k, µ)



Kaiser Formula

Linear regime

growth-rate parameter f(z) ≡ d lnD+

d ln a
D+(z) : Linear growth factor

(galaxy bias, ignored)

Kaiser (’87)standard 
formula

Vector modes induces new term

modified 
formula

matter P(k) in real space

P (S)(k, µ) = (1 + f µ2)2Pδ(k) + 1
2µ2(1− µ2) Pω(k)

Power spectrum of vorticity

P (S)(k, µ) = (1 + f µ2)2 Pδ(k)



Multipole expansion

P (S)
0 (k) = (1 + 2

3f + 1
5f2) Pδ(k) + 1

15Pω(k)

P (S)
2 (k) = ( 4

3f + 4
7f2) Pδ(k) + 1

21Pω(k)

P (S)
4 (k) = 8

35f2 Pδ(k)− 4
35Pω(k)

Combining P0,P2 & P4, we can separately detect vorticity.

{
Simple Fisher analysis indicates that vorticity component with 
vector/scalar ratio of 5~10% in amplitude would be detected. 

P (S)(k, µ)

=
�

�=0

P (S)
� (k)P�(µ)

Legendre polynomials



背景銀河の
イメージ

Cosmic Shear
Distortion of distant-galaxy images due to weak 

gravitational lensing by large-scale structure

Complex ellipticity

a b

inclination: φ

χ =
�

a2 − b2

a2 + b2

�
ei 2φ

shear field

→ 2γ

Gravitational Lensing induces spatial correlation in the shear field.



E-/B-mode decomposition

spatial pattern of shear field is decomposed to E-/B-modes
In analogy to CMB polarization, 

D. Munshi et al. / Physics Reports 462 (2008) 67–121 77

Fig. 3. Illustrative E and B modes: the E modes show what is expected around overdensities (left) and underdensities (right). The B mode patterns should
not be seen (from van Waerbeke and Mellier [303]).

Fig. 4. Compilation of most of the shear measurements listed in Table 4. The vertical axis is the shear top-hat variance multiplied by the angular scale in
arcminutes. The horizontal axis is the radius of the smoothing window in arcminutes. The positioning along the y-axis is only approximate given that the
different surveys have a slightly different source redshift distribution. The RCS result (mean source redshift of 0.6) was rescaled to a mean source redshift
of one.

decompositions in polarisation fields. In fact weak lensing can generate B-modes, but they are expected to be very
small [245], so the existence of a significant B-mode in the observed shear pattern is indicative of some non-lensing
contamination. Illustrative examples of E- and B-modes are shown in Fig. 3 (from [303]). The easiest way to introduce a
B-mode mathematically is to make the lensing potential complex:

φ = φE + iφB. (3.11)

There are variousways to determinewhether a B-mode is present. A neatway is to generalise the aperturemass to a complex
M = Map + iM⊥, where the real part picks up the E modes, and the imaginary part the B modes. Alternatively, the ξ± can be
used [60,246]:

Pκ±(�) = π
� ∞

0
dθ θ [J0(�θ)ξ+(θ) ± J4(�θ)ξ−(θ)], (3.12)

where the ± power spectra refer to E and B mode powers. In principle this requires the correlation functions to be known
over all scales from 0 to ∞. Variants of this [60] allow the E/B-mode correlation functions to be written in terms of integrals
of ξ± over a finite range:

ξE(θ) = 1
2

�
ξ−(θ) + ξ�

+(θ)
�

ξB(θ) = −1
2

�
ξ−(θ) − ξ�

+(θ)
�
,

(3.13)
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decompositions in polarisation fields. In fact weak lensing can generate B-modes, but they are expected to be very
small [245], so the existence of a significant B-mode in the observed shear pattern is indicative of some non-lensing
contamination. Illustrative examples of E- and B-modes are shown in Fig. 3 (from [303]). The easiest way to introduce a
B-mode mathematically is to make the lensing potential complex:

φ = φE + iφB. (3.11)

There are variousways to determinewhether a B-mode is present. A neatway is to generalise the aperturemass to a complex
M = Map + iM⊥, where the real part picks up the E modes, and the imaginary part the B modes. Alternatively, the ξ± can be
used [60,246]:

Pκ±(�) = π
� ∞

0
dθ θ [J0(�θ)ξ+(θ) ± J4(�θ)ξ−(θ)], (3.12)

where the ± power spectra refer to E and B mode powers. In principle this requires the correlation functions to be known
over all scales from 0 to ∞. Variants of this [60] allow the E/B-mode correlation functions to be written in terms of integrals
of ξ± over a finite range:

ξE(θ) = 1
2

�
ξ−(θ) + ξ�

+(θ)
�

ξB(θ) = −1
2

�
ξ−(θ) − ξ�

+(θ)
�
,

(3.13)

E-mode

B-mode
Scalar-type perturbations only 

generate E-mode pattern.

Notice !

Vector-type perturbations can produce not only E-mode, 
but also B-mode cosmic shear (clue to detect vector modes)



Vector cosmic shear: formula

γ = −
� rs

0
dr

rs − r

2r rs
r2 ei

+ej
+

Shear field from vector modes Flat universe

r : comoving radial distance

rs : comoving radial distance for distant galaxies

er, e+ ≡ eθ + ieϕ :
projection vector

B-mode angular power spectrum 

CBB
� =

2
π

� ∞

0
dk k2

� rs

0
dr

� rs

0
dr�

×
�

3rs − 4r

2r rs

� �
3rs − 4r�

2r� rs

��
3rs − 4r�

2r� rs

�
j�(k r) j�(k r�) Pσ(k; r, r�)

metric fluc.
(vector mode)

[ek
r∂i∂j σk −

d

dr
∂jσi]



Summary
Detecting vector modes from large-scale structure

Redshift distortion via spectroscopic survey

B-mode cosmic shear via imaging surveys

Derive basic formulas for power spectra: P (S)(k, µ), CBB
�

Feasibility of future observations

: would detect cosmic strings of Lensing B-mode

Redshift distortion : would detect vorticity component 
if vector/scalar ratio of 5~10% @ k<0.1h/Mpc{

※ Synergy with dark energy survey may be fruitful

(Thomas et al. ’09)

Gµ � 10−7


